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Abstract

This paper presents the verification study of a Reynolds-

Averaged Navier-Stokes (RANS) turbulence model using the

Method of Manufactured Solutions (MMS) in a finite volume

Computational Fluid Dynamics (CFD) code. The Eilmer CFD

code is an open-source fluid solver which solves the compress-

ible Navier-Stokes equations to provide time-accurate simula-

tions of compressible flows in two and three dimensions. The

turbulence model verified is Wilcox’s (2006) k−ω model. The

turbulence model implementation is verified through the order

of accuracy test. An expected spatial order of accuracy of 2

is demonstrated with mesh refinement, matching the formal or-

der of Eilmer numerics. The verification process significantly

facilitated the detection and removal of coding mistakes in our

implementation. We also provide discussion of coding mistakes

that were identified and corrected as part of our verification ex-

ercise.

Introduction

With increased use of simulation for fluid dynamics calcula-

tions, the trustworthiness of those results is increasingly impor-

tant. Defined as “solving the equations right” [1], verification is

the process of assessing and ensuring the correctness of the im-

plemented numerical algorithms, as well as the accuracy of the

numerical solution. One practice in code verification is the use

of exact solutions to the governing equations to compare against

the numerical solution. However, traditional exact solutions are

usually only available when the governing equations are fairly

simple, which is certainly not the case for problems of practical

interest. Considering this challenge, an alternative approach,

the Method of Manufactured Solutions (MMS), was first pro-

posed by Steinberg and Roache [2] and extended by Roache et

al. [3]. The detail of how the method works is presented in Sec-

tion: “Method of Manufactured Solutions”. Here, we review

where the method has been applied.

In the pioneering work from Steinberg and Roache [2] in 1984,

the MMS approach was first applied to verify a code for gener-

ation of 3D transformations for elliptic partial differential equa-

tions (PDEs). The book by Oberkampf and Roy [4] provides a

comprehensive discussion on the use of MMS for code verifi-

cation along with the order of accuracy test. This method grad-

ually became a general and powerful technique for code veri-

fication. Knupp and Salari [5] presented a detailed account of

MMS-based code verification for incompressible and compress-

ible Navier-Stokes codes. More recently, Roy and co-workers

extended the use of MMS for the verification of various aspects

of numerical modelling[6, 7, 8], including turbulence models,

boundary conditions and unsteady flows. Based on the veri-

fication cases in Roy’s paper [6], Gollan and Jacobs [9] have

verified Eilmer for Euler and laminar Navier-Stokes solutions.

Veeraragavan et al. [10] used MMS to test the implementation

of tightly-coupled conjugate heat transfer solver for gas-solid

domain coupling, also in Eilmer. In this work, we extend our

verification cases to test our implementation of the k−ω turbu-

lence model.

The use of MMS has not been widely applied for turbulence

model verification. Only a handful of researchers have recently

begun to address the verification of CFD codes with Reynolds-

Averaged Navier-Stokes (RANS) turbulence models. Bond et

al. [11] developed a general methodology for generating man-

ufactured solutions that satisfy a desired boundary condition

and applied it to multiple turbulence models. A new manufac-

tured solution for wall-bounded turbulent flow with the Spalart-

Allmaras model [12] was proposed by Oliver [13] and applied

to verify the implementation of the FANS-SA equations. Eça

and co-researchers [14, 15, 16] developed solutions that are in-

tended to mimic two-dimensional, incompressible, stationary

boundary layer flow, and multiple turbulence models includ-

ing one-equation model and two-equation models were tested.

While successful in some cases, their physically realistic so-

lutions often led to numerical instabilities, a reduction in the

observed grid convergence rate, or even inconsistency of the

numerical scheme. Roy [17] et al. tried to use non-physical

manufactured solutions for code verification, and successfully

applied these manufactured solutions to the verification of a

Menter’s k − ω model. The verification case for turbulence

modelling presented by Roy [17] is used here to test the im-

plementation of the Wilcox (2006) k−ω turbulence model [18]

in Eilmer.

Governing Equations

Eilmer is an integrated collection of programs that solves the

compressible Navier-Stokes equations to provide time-accurate

simulations of compressible flows in two and three dimensions

[9]. The governing equations are expressed in integral form

over cell-centered, finite-volume cells, with the time rate of

change of conserved quantities in each cell specified as a sum-

mation of the mass, momentum and energy flux through the

cell interfaces. In this work, we are interested in verifying the

implementation of the the Wilcox (2006) k−ω model[18]. The

Favre-averaged equations for conservation of mass, momentum,

energy and the equations defining the k −ω model are as fol-

lows.
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Figure 1: Manufactured solution source terms for turbulence equations: a) k-equation source term, b) ω-equation source term.
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ũiũi
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ũi

(

t̄i j + ρ̄τi j

)]

(3)

Molecular and Reynolds-Stress Tensors:
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Turbulence Kinetic Energy:
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Specific Dissipation Rate:
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Method of Manufactured Solutions

The Method of Manufactured Solutions involves choosing an

analytical solution that does not satisfy the governing equa-

tions exactly. Then the manufactured solution is passed through

the differential operators of the governing equations to gener-

ate source terms. These source terms are added to the original

governing equations so that the manufactured solution is recov-

ered as a solution to the governing equations plus source terms.

Now the manufactured solutions are guaranteed to be the solu-

tions of the “modified” equations. Through the discretization of

the “modified” equations, the code should produce a numerical

approximation to the manufactured solution, and the difference

between the two is defined as the discretization error. The or-

der of accuracy test evaluates discretization error on multiple

grid levels, and then determines whether or not the discretized

error is reduced at an expected rate given by the formal order

of the implemented numerical scheme, in other words, if the

observed order of accuracy matches the formal order. Because

of this rigor, the test is therefore the recommended acceptance

criteria for code verification[4]. Following Roy et al., the man-

ufactured solutions employed here for RANS turbulence model

test all take the form:

φ(x,y) =φ0 +φx fs

(aφxπx

L

)

+φy fs

(aφyπy

L

)

+φxy fs

(aφxyπxy

L2

)

(6)

where φ = [ρ, u, v, p, k, ω]T represents any of the primitive

variables and the fs function represents sine or cosine functions.

The special values for the constants can be found in Ref. [17].

We used a computer algebra system to generate the source

terms. Specifically, we used the Python package SymPy [19].

The produced source terms for the governing equations of tur-

bulence (k−ω) are shown in Figure 1. As can be seen, these

source terms exhibit smooth variations in both the x and y di-

rections.

Results and Discussions

Based on the above manufactured solutions, verification of the

turbulence model implementation was performed. The square
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Figure 2: Convergence history of norms based on k for different mesh sizes: a) L2 norms, b) L∞ norms.
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Figure 3: Norms and observed order of accuracy.

test domain employed regular structured grids and was initial-

ized by φ0 everywhere in the field. The ideal gas model was

selected and Prandtl number had a constant value of Pr = 1.0.

The viscosity was set to a large value of µ= 10Ns/m2 to balance

the order of magnitude of viscous terms and convection terms,

such that error detection in the viscous terms is easier [6]. Exact

Dirichlet values given by the manufactured solution are speci-

fied at all of the boundaries. In order to determine whether or

not the spatial discretization error is diminishing as predicted

by the formal order of accuracy, we ran simulation tests on four

different levels of grid. The numbers of cells for the meshes in

the x and y directions are: 8×8, 16×16, 32×32 and 64×64,

respectively. The discretization error is assessed by L2 and L∞

norms:

L2 =

(

∑N
n=1 |φn −φexact |

2

N

)1/2

, (7)

and

L∞ = max |φn −φexact | . (8)

Figure 2 presents the transient behaviors of the L2 and L∞ norms

based on turbulence kinetic energy (k) for various mesh sizes.

As the simulation proceeds, the norm errors first decrease dras-

tically and then gradually approach the steady state (≥ 60ms).

For successive grid refinements, the expected trend of a decreas-

ing error is also displayed.

Using the norm values at grid level k and at the coarser grid level

k+1, the observed order of spatial accuracy can be computed.

Pk = log

(

Lk+1

Lk

)

/ log(r) (9)

where the r is the grid refinement factor, and equals 2.0 here.

Figure 3(a) shows the steady-state error norms for the various

meshes plotted as a function of cell size ∆x. Also shown is a

theoretical slope for 2nd order convergence. The L2 and L∞

norms both display second order spatial convergence. This is

confirmed in Figure 3(b) where the observed order of accuracy

is shown. The observed order of accuracy approaches the for-

mal order of two as the grid density increases. The other primi-

tive variables that are not plotted in this paper, but the results of

converging towards second order accuracy were also observed.

The formal order of accuracy of Eilmer is matched and the im-

plementation of turbulence model is verified successfully.

During code verification studies, the order of accuracy test for

turbulence model failed initially. The observed order of accu-

racy appeared to be first order, and then kept reducing with in-

creased grid resolution. In order to find the reason that caused

the reduction in order of accuracy, we devised a code debugging

method in which we started only with the inviscid terms in both

the numerical solver and the manufactured solution and demon-

strated second-order convergence of the errors. We then turned

on the turbulence terms associated with the invscid terms, and

then the viscous terms and its associated turbulence terms in

sequence. By this process we could locate and remove some

coding errors when the order of accuracy test failed. Using

this process, a bug in the convective flux term in the total en-

ergy equation was identified. The turbulent kinetic energy had

not been included in the total energy calculation in a consistent

manner throughout the code. This bug was corrected. How-

ever, the coding bug was undetected during previous validation

of the the Wilcox (2006) k−ω model against experiments per-



formed by Wilson et al. [20]. This highlights, therefore, the

need for demonstrating the verification of models used in com-

putational solvers as an important and necessary step prior to

model validation to ensure that there are no hidden coding er-

rors in the implementation. In this instance, the error was not

influential and the results with and without the error were com-

parable and hence a reasonable validation against experiments

occurred. However, in other instances this could be a result of

the particular experimental validation dataset not pushing all of

the physical effects that the model carries.

Conclusions

The paper presented the verification work for the implemen-

tation of Wilcox’s (2006) k − ω model in Eilmer using the

Method of Manufactured Solutions (MMS). The employed

manufactured solutions are smooth, non-physical and exercise

all terms in the turbulence equations. Through computing the

observed order of accuracy on a series of consistently-refined

grids, the implementation has been verified after a bug was iden-

tified and corrected. For regular structured grids, the observed

order of spatial accuracy matched the formal order of two. The

use of MMS on selective parts of the governing equations was

an extremely useful way to detect and eliminate coding mistakes

in our implementation.
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